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Coupled Microbial Degradation/TransportCoupled Microbial Degradation/Transport

Question:
  Can we predict the dynamics of microbial sorption
  coupled with biodegradation? (degrading -> desorb)
     • microbial distributions become more homogeneous
         with electron donor/acceptor injections?
     • can heterogeneities be characterized?

Methods:
   • batch, 1-D, Heterogeneous 2-D laboratory experiments
   • reactive transport modeling

Ellyn Murphy
Tom Resch, Jerry Phillips (exp.)
Jim Szecsody, Brian Wood, Tim Ginn (modeling)
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Coupled ProcessesCoupled Processes

• if not degrading, Kd = 100 (microbial isolate CN32)
• if degrading, Kd decreases with microbial activity:
       lactate + oxygen -> acetate
       lactate + nitrate -> acetate + nitrite
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Microbial Activity in 1-D SystemMicrobial Activity in 1-D System

• biodegradation generally
   predicted (2 acceptors)

• microbial downgradient move-
  ment with growth predicted

• immobile CN32 data:  need
  more discrete sampling
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2-D Experimental/Modeling System
Flow Cell Packing:  CN-32 microbes only in (35) low-K lenses (16.75% of total volume):

(1.3 x 108 CFU/ml)

Flow Field
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2-D Model: Testing Coupling Process2-D Model: Testing Coupling Process
Constant Microbial Sorption (Kd = 100):   inclusions 39% growth, high-K media, 15x

Coupled Sorption/Deg. (Kd = 100):   inclusions 21% growth, high-K media, 9x

low-K pattern:

low-K pattern:

growth zones
more discrete
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Coupled Process Modeling: 
Characteristic Growth Patterns

• Continuous downgradient “streaks” 
    (low conc. , high velocity injection)

• Discontinuous downgradient "zones"
(high conc., low vel. pulse) 
    

• Far field advection
    (from high conc., continuous injection)

run 237

run 239

run 236

30% of biomass advected out of system

high-K pattern

low-K pattern

high-K pattern
low-K pattern
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Coupled Process Modeling: 
Immobile Microbial Population Simulation 
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• desorption coupled to degradation enables far field transport
   of microbes
• differing injection strategies produce differing pattern:
   - excess nutrients and flow:  far field migration
   - fast flow, low conc.: continuous microbial deposition
   - short, high conc. pulse: discontinuous microbial deposition
          (i.e., nutrient pulse relative to inclusion size and flux)
• may be able to characterize heterogeneities to some extent by
    differing injection strategies

Predicting Coupled MicrobialPredicting Coupled Microbial
Degradation/TransportDegradation/Transport

(coupled process quantified in idealized laboratory-scale system
  with intense sampling strategy and simulations)
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Heterogeneity and Field-ScaleHeterogeneity and Field-Scale
Permeable BarriersPermeable Barriers

Questions:
  What is the influence on a chemical redox-reactive
  subsurface barrier by:
    • scale of heterogeneity
    • anisotropy

Methods:
   • field scale characterization, geostatistics, simulations
   • comparison with field scale injection data, long-term
      barrier performance

John Fruchter, Vince Vermeul (PIs), Chris Murray, Yulong Xie (geostatistics)
Mark Rockhold, Mark Williams (modeling), Jim Szecsody (geochemistry)
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Reactive Redox Barrier ConceptReactive Redox Barrier ConceptReactive Redox Barrier Concept

CrVI
groundwater

flow

No barrier; uncontrolled contaminant movement

ISRM wells in place, dithionite injection in center wells (1 year)

CrVI
dithionite injection

CrVI

permeable reduced sediment zone; thickness 50'

no CrVI

ISRM barrier complete (3 years); longevity ~ 20 years

ISRM passive reactive barrier in 10 years

CrVI
barrier slowly consumed by CrVI and O2

CrVI removed by barrier

downgradient CrVI

• barrier is slowly oxidized over decades
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Iron Phase Changes During ReductionIron Phase Changes During Reduction

sediment
untreated
reduced
red./oxidized

FeII FeIII

• 80% of FeII reduced is adsorbed FeII, <20% siderite
     all adsorbed FeII and some siderite is oxidized by O2
    

(all mmol Fe/g)
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.

Objective

• Reactive Transport with Chemical
  Heterogeneities

• Reaction rates in radial flow field

• Aquifer Clogging, Clay movement,
    Test field-scale operations

• Identify/quantify geochemical reactions
• Interactions of multiple reactions
• Reactivity in flowing columns

• Reactivity/Conceptualization in
  natural system, dense fluid injection

 • Application in Contaminated Aquifer

Experiment

Batch - Natural Sediments

Batch - Artificial  Sediments

• Reactive Transport with Particle-Scale
   Heterogeneity 1-D Column

Quasi-radial (15 m)

2-D (1 m)

Radial (7 m)

Single Well 
Injection/Recovery,
14 monitoring wells
(10 m)
Multiple Well 
Injection/Recovery
(600 m)

Be
nc

h 
Sc

al
e

In
te

rm
ed

ia
te

 S
ca

le
Fi

el
d 

Sc
al

e

Scale of Research



14



15

Chromium in Groundwater – ISRM Barrier
Hanford 100D Area – September, 2002

Chromium in Groundwater Chromium in Groundwater –– ISRM Barrier ISRM Barrier
Hanford 100D Area Hanford 100D Area –– September, 2002 September, 2002

flow
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ISRM Hanford 100D Area Barrier IssueISRM Hanford 100D Area Barrier Issue

Issue:
  Chromate breakthrough after 6 years in one location

Potential Causes:
   • air rotary drilling prematurely causing barrier oxidation
   • high-K, low-Fe zone extends through barrier; natural
     or air-injection caused (i.e., large scale heterogeneity)

Path forward:
  • re-reduce, monitor
    barrier for years

(unknown effect of drilling)
(insufficient heterogeneity characterization)
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Heterogeneity and Anisotropy Effect onHeterogeneity and Anisotropy Effect on
Injection:  Frontier ISRM SiteInjection:  Frontier ISRM Site
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Objective:   prevent offsite migration of chromate

Frontier Chrome SiteFrontier Chrome Site

Issues:   • layers:  A1 high chrome/low-K, 
                   A2: low chrome/high-K
                 • spatial heterogeneity

is this a valid approach?is this a valid approach?
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Characterize Heterogeneity: borehole flowmeters - relative K

Heterogeneity ApproachHeterogeneity Approach

Lateral (feet)

Synthesize 3-D Ksat/Fe distribution: assume correlation area
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Lateral (feet)

Average Ksat field from 100 realizations
Single well (2-D radial) simulation to address injections

Simulation ApproachSimulation Approach

Figure 2 ISRM Barrier Installation Plan map
PP012 PP011      PP016        PP017        PP015       INJ1        PP014              PP013

single wellsingle well
flow fieldflow field

3-D simulation to address barrier longevity
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AnisotropyAnisotropy

dith.
6 h

dith.
48 h

Fe(II)
96 h

Kh/Kv = 10Kh/Kv = 100

• high anisotropy avoids plume sinking problem
• pump test data indicates Kh/Kv = 100+ (large scale data)
• dense liquid injection data indicates Kh/Kv = 10
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Plume Sinking and HeterogeneityPlume Sinking and Heterogeneity
inject 0.08 M dithionite

dith.
6 h

dith.
48 h

Fe(II)
96 h

inject 0.04 M dithionite

• inject a lower concentration to avoid density/plume sinking
• injection data indicates more sinking than simulations
    (heterogeneities not as continuous?)
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• lateral extent of high-K/low-Fe layers could affect
   long-term barrier performance; open question

In Situ Reactive Barrier DesignIn Situ Reactive Barrier Design

• multi-well anisotropy data insufficient for prediction
  of single-well dense plume injection (scale of data)

• even with 14 wells within 120 ft, insufficient 
   heterogeneity characterization to address 
   lateral extent of high-K layers

(coupled processes not quantified at field scale, even
  with intense sampling strategy and simulations)


